

Real-Time MEG Analysis

Dr. Tom Holroyd
NIMH MEG Core Facility

Club Meg

20201023

Topics

● Hardware

● Examples

– Subject Re-positioning
– Neurofeedback
– RT Beamforming

● Machine learning

– Using beamformers and forward solutions
– BCI

Hardware

● CTF 275-channel MEG

● Data from the SQuID electronics are sent in packets of about 90 samples
(~75 ms at 1.2 kHz) to the Acquisition computer (called Squid)

● A Python script (acq_reader) gets copies:
● Packets are converted to Python Numpy arrays and processed
● Results can be sent over network connections to other computers

● Both serial and network connections are available for the stimulus computer (called Ika)
● A high-performance GPU-enabled workstation (called Kani) is available over the network

(NFS / direct packets)

Hardware

● Squid (aka the Acquisition computer)

– 8 core Intel Xeon CPU X5647 @ 2.93GHz
– 12 GB RAM
– Receives MEG data from CTF electronics
– Process and save/send to other computers

Hardware

● Ika (Stimulus computer)

● Ika can talk to the Acq computer (Squid) by serial or TCP

● NVIDIA GTX 1060 GPU (6 GB)

● Example: The Head Repositioning System

Hardware

● Kani

● 20 core Intel Xeon W-2255 CPU @ 3.70GHz

● NVIDIA Quadro RTX 8000 GPU, 48 GB RAM

● 1 TB SSD & 4 TB HD storage

● Singularity container with Keras/Tensorflow 2.0

Subject Re-positioning

Continuous Head Localization Example

The CTF system can be configured to provide
continuous output of head position information.

The acq_reader script extracts the head position
information from the real-time data stream and
outputs it to the stimulus computer over a serial link.

The stimulus computer displays a model of the
subject‘s head position inside the MEG sensor.

Target locations for the fiducial coils, read from a
previously recorded dataset, are displayed as boxes.

The subjects can use this to position themselves into
a similar position to the one they were in for the
previous recording.

This is what the subject sees

RT Neurofeedback (simple version)

We have an example script that does the following:

RT channel data are filtered into a narrow band
(alpha) and an instantaneous power estimate is sent
to the stimulus computer.

The stimulus computer displays this power level
(which can in fact be a ratio of two different
frequency band powers, or indeed anything) as the
height of a ball over a stand.

The Acq computer is powerful enough to calculate a
number of metrics to send to the stimulus computer
for biofeedback purposes.

Virtual beamformer channels are also possible.

This is what the subject sees

RT Beamforming

Step one in creating a beamformer is
calculating a head model, which
requires an MRI.

The subject‘s MRI must be labeled
with fidicual marks before the scan,
and rotated into the correct coordinate
system. Target coordinates can be
selected beforehand.

Next, a baseline collection is required before RT operations, to establish the head
position and covariance statistics. That dataset can then be used to establish a
head model.

Beamformers are calculated on the Acq computer using the usual sam_cov and
sam_wts programs. Beamformers are vectors, one per target source. Multiple
beamformers can be used to calculate virtual timeseries in real time.

It‘s best to use very recent covariance data.

RT Beamforming

A beamformer is calculated from data, as well as a magnetic field
calculation that depends on the head model.

Because the brain‘s statistics are non-stationary, the covariance
matrix used to create the beamformer may change during a long
recording.

To deal with this, we have an algorithm called SER (Widrow &
Stearns) which calculates the covariance matrix on the fly. Data
samples can be sent to a separate process on the Acq computer
which continuously updates a covariance matrix.

This RT covariance can be used to update the beamformer, which
improves S/N.

Machine Learning

● RT MEG data are sent over the network to the
compute engine Kani, either via direct socket or NFS
filesystem.

● Pre-computed beamformers can be loaded into a
Deep Neural Network (DNN) model.

– This allows the GPU to calculate virtual channels.
● Forward solutions can be computed (sam_wts -B)

and used by the network to reconstruct the input.

Machine Learning

● A beamformer is just a vector of 275 numbers, one per
channel. A virtual channel is just the inner product of the
filtered data with a beamformer. This is what a neural
network does (linear combination).

● N beamformers can be loaded into a DNN tensor layer.
Then the input 275-channel MEG data is automatically
turned into N virtual channels inside the DNN.

● Forward solutions (sam_wts -B), the computed magnetic
fields from the head model, can be loaded into DNN
layers too. Then the network can, using deeper, trained
layers, compute what the magetic field would look like.

Autoencoder

An autoencoder learns to reproduce its input.

That is, the output is trained on the input (self-
supervised learning). The middle layer “code“ is a
lower dimensional representation of the input.

Autoencoder Input & Output

Raw MEG Data Reconstruction

This network had 50 weights in the middle layer. Contrast has
been enhanced due to elimination of unmodeled noise.

Classifier with Frozen Beamformers

input_tensor = Input(shape = (seglen, M))

l = Dense(Nbeam, activation = 'linear', bias = False)

x = l(input_tensor)

l.set_weights([Beam])

l.trainable = False

l1 = x = Lambda(lambda x: x * x)(x)

x = BatchNormalization()(x)

x = Dropout(.5)(x)

x = Convolution1D(30, 15, activation = 'softplus')(x)

x = Convolution1D(30, 15, activation = 'softplus')(x)

x = MaxPooling1D(2)(x)

x = BatchNormalization()(x)

x = Dropout(.5)(x)

x = Convolution1D(30, 10, activation = 'softplus')(x)

x = Convolution1D(30, 10, activation = 'softplus')(x)

x = MaxPooling1D(2)(x)

x = BatchNormalization()(x)

x = Dropout(.5)(x)

x = Flatten()(x)

x = Dense(50, activation = 'softplus', bias = True)(x)

x = Dense(50, activation = 'softplus', bias = True)(x)

x = Dense(50, activation = 'softplus', bias = True)(x)

x = Dense(len(mlist), activation = 'softmax', bias = True)(x)

classifier = x

Keras/Tensorflow code that loads beamformers
into a frozen input layer.

Predictive Ability

Each voxel‘s ability to classify the data alone (% over trials)

Beta band (15-30 Hz)

Loading Frozen Forward Solutions

input_tensor = Input(shape = (M,))

x = Dense(30, activation = 'softplus')(input_tensor)

x = Dense(Nfwd, bias = False, activation = 'linear')(x)

Nfwd_tensor = x

fwd_layer = Dense(M, bias = False, activation = 'linear')

fwd_tensor = fwd_layer(Nfwd_tensor)

Load forward solutions into the final layer's weights.

fwd_layer.set_weights([Dfwd]) # weights from sam_wts -B

fwd_layer.trainable = False

model = Model(input = input_tensor, output = fwd_tensor)

m1 = Model(input = input_tensor, output = Nfwd_tensor) # create after training model

m1.save(“model.h5“)

Keras/Tensorflow code that creates a
frozen layer from forward solutions:

Near the Button Press

Nfwd_tensor prediction, given raw data point

BCI

● Use real-time beamformers to compute virtual
channels in various parts of the brain

● Compute feature sets using the virtual RT data, for
example, a low dimensional code layer of an
autoencoder

● Train the DNN to use these features by conditioning
the code layer‘s learning on the required output signal

● Time-dependent DNNs using LSTM and Transformers
to decode neural language (* see me)

Thanks

Much of the real-time data-acquisition pipeline is still under
development.

Participation is easy since most of the code is Python.

MEG Core Staff can help with customization to particular
applications, and assistance with Deep Learning models.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

